Removal of the glycosylphosphatidylinositol anchor from PrP(Sc) by cathepsin D does not reduce prion infectivity.

نویسندگان

  • Patrick A Lewis
  • Francesca Properzi
  • Kanella Prodromidou
  • Anthony R Clarke
  • John Collinge
  • Graham S Jackson
چکیده

According to the protein-only hypothesis of prion propagation, prions are composed principally of PrP(Sc), an abnormal conformational isoform of the prion protein, which, like its normal cellular precursor (PrP(C)), has a GPI (glycosylphosphatidylinositol) anchor at the C-terminus. To date, elucidating the role of this anchor on the infectivity of prion preparations has not been possible because of the resistance of PrP(Sc) to the activity of PI-PLC (phosphoinositide-specific phospholipase C), an enzyme which removes the GPI moiety from PrP(C). Removal of the GPI anchor from PrP(Sc) requires denaturation before treatment with PI-PLC, a process that also abolishes infectivity. To circumvent this problem, we have removed the GPI anchor from PrP(Sc) in RML (Rocky Mountain Laboratory)-prion-infected murine brain homogenate using the aspartic endoprotease cathepsin D. This enzyme eliminates a short sequence at the C-terminal end of PrP to which the GPI anchor is attached. We found that this modification has no effect (i) on an in vitro amplification model of PrP(Sc), (ii) on the prion titre as determined by a highly sensitive N2a-cell based bioassay, or (iii) in a mouse bioassay. These results show that the GPI anchor has little or no role in either the propagation of PrP(Sc) or on prion infectivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural Organization of Mammalian Prions as Probed by Limited Proteolysis

Elucidation of the structure of PrP(Sc) continues to be one major challenge in prion research. The mechanism of propagation of these infectious agents will not be understood until their structure is solved. Given that high resolution techniques such as NMR or X-ray crystallography cannot be used, a number of lower resolution analytical approaches have been attempted. Thus, limited proteolysis h...

متن کامل

Characterization of the properties and trafficking of an anchorless form of the prion protein.

Conversion of PrP(C) into PrP(Sc) is the central event in the pathogenesis of transmissible prion diseases. Although the molecular basis of this event and the intracellular compartment where it occurs are not yet understood, the association of PrP with cellular membranes and in particular its presence in detergent-resistant microdomains appears to be of critical importance. In addition it appea...

متن کامل

Infectivity-associated PrPSc and disease duration-associated PrPSc of mouse BSE prions

Disease-related prion protein (PrP(Sc)), which is a structural isoform of the host-encoded cellular prion protein, is thought to be a causative agent of transmissible spongiform encephalopathies. However, the specific role of PrP(Sc) in prion pathogenesis and its relationship to infectivity remain controversial. A time-course study of prion-affected mice was conducted, which showed that the pri...

متن کامل

Glycosylphosphatidylinositols: More than just an anchor?

There is increasing interest in the role of glycosylphosphatidylinositol (GPI) anchors that attach some proteins to cell membranes. Far from being biologically inert, GPIs influence the targeting, intracellular trafficking and function of the attached protein. Our recent paper demonstrated the role of sialic acid on the GPI of the cellular prion protein (PrP(C)). The "prion diseases" arise foll...

متن کامل

Cells expressing anchorless prion protein are resistant to scrapie infection.

The hallmark of transmissible spongiform encephalopathies (TSEs or prion diseases) is the accumulation of an abnormally folded, partially protease-resistant form (PrP-res) of the normal protease-sensitive prion protein (PrP-sen). PrP-sen is attached to the cell membrane by a glycosylphosphatidylinositol (GPI) anchor. In vitro, the anchor and the local membrane environment are important for the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 395 2  شماره 

صفحات  -

تاریخ انتشار 2006